On the product of two Legendre polynomials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Polar Legendre Polynomials

We introduce a new class of polynomials {Pn}, that we call polar Legendre polynomials, they appear as solutions of an inverse Gauss problem of equilibrium position of a field of forces with n + 1 unit masses. We study algebraic, differential and asymptotic properties of this class of polynomials, that are simultaneously orthogonal with respect to a differential operator and a discrete-continuou...

متن کامل

Legendre polynomials Triple Product Integral and lower-degree approximation of polynomials using Chebyshev polynomials

In this report, we present two mathematical results which can be useful in a variety of settings. First, we present an analysis of Legendre polynomials triple product integral. Such integrals arise whenever two functions are multiplied, with both the operands and the result represented in the Legendre polynomial basis. We derive a recurrence relation to calculate these integrals analytically. W...

متن کامل

Wavelets Based on Legendre Polynomials

We construct an orthogonal wavelet basis for the interval using a linear combination of Legendre polynomial functions. The coefficients are taken as appropriate roots of Chebyshev polynomials of the second kind, as has been proposed in reference [1]. A multi-resolution analysis is implemented and illustrated with analytical data and real-life signals from turbulent flow fields.

متن کامل

Congruences concerning Legendre Polynomials

Let p be an odd prime. In the paper, by using the properties of Legendre polynomials we prove some congruences for È p−1 2 k=0 2k k ¡ 2 m −k (mod p 2). In particular, we confirm several conjectures of Z.W. Sun. We also pose 13 conjectures on supercongruences.

متن کامل

Legendre polynomials and supercongruences

Let p > 3 be a prime, and let Rp be the set of rational numbers whose denominator is not divisible by p. Let {Pn(x)} be the Legendre polynomials. In this paper we mainly show that for m,n, t ∈ Rp with m 6≡ 0 (mod p), P[ p 6 ](t) ≡ − (3 p ) p−1 ∑ x=0 (x3 − 3x + 2t p ) (mod p)

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MATHEMATICA SCANDINAVICA

سال: 1956

ISSN: 1903-1807,0025-5521

DOI: 10.7146/math.scand.a-10471